Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281302

RESUMO

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animais , Bacillus thuringiensis/metabolismo , Culicidae/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/química , Toxinas de Bacillus thuringiensis , Sequência de Aminoácidos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Larva , Cátions/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/química
2.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37314965

RESUMO

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Assuntos
Culicidae , Parasitos , Animais , Culicidae/metabolismo , Culicidae/parasitologia , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
3.
Sci Rep ; 13(1): 22222, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097730

RESUMO

Plasmodium oocysts develop on the abluminal side of the mosquito midgut in relatively small numbers. Oocysts possess an extracellular cell wall-the capsule-to protect them from the insect's haemolymph environment. To further maximise transmission, each oocyst generates hundreds of sporozoites through an asexual multiplication step called sporogony. Completion of transmission requires sporozoite egress from the capsule (excystation), but this process remains poorly understood. In this study, we fused the parasite-encoded capsule protein Cap380 with green fluorescent protein in a transgenic P. berghei line, allowing live fluorescence imaging of capsules throughout sporogony and sporozoite excystation. The results show that capsules progressively weaken during sporulation ultimately resulting in sporozoite exit through small holes. Prior to formation of the holes, local thinning of the capsule was observed. Our findings support an excystation model based on local, rather than global, weakening of the capsule likely facilitated by local re-orientation of sporozoites and apical secretion.


Assuntos
Culicidae , Plasmodium , Animais , Oocistos/metabolismo , Esporozoítos/metabolismo , Plasmodium/metabolismo , Animais Geneticamente Modificados/metabolismo , Culicidae/metabolismo , Proteínas de Protozoários/metabolismo , Plasmodium berghei/metabolismo
4.
J Virol ; 97(8): e0085423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555662

RESUMO

Mosquito-borne dengue viruses (DENVs) have evolved to four serotypes with 69%-78% amino acid identities, resulting in incomplete immunity, where one serotype's infection does not cross-protect against secondary infections by other serotypes. Despite the amino acid differences, structural and nonstructural (NS) proteins among serotypes play similar functions. NS3 is an enzyme complex: NS3 has N-terminal protease (PRO) and C-terminal helicase (HEL) activities in addition to 5' RNA triphosphatase (5'RTP), which is involved in the RNA capping process. In this study, the effects of NS3 replacements among serotypes were tested. The replacement of NS3 full-length (FULL), PRO or HEL region suppressed viral replication in BHK-21 mammalian cells, while the single compensatory mutation improved the viral replications; P364S mutation in HEL revived PRO (DENV3)-replaced DENV1, while S68T alteration in NS2B recovered HEL (DENV1)-replaced DENV2. The results suggest that the interactions between PRO and HEL as well as HEL and NS2B are required for replication competence. Lower-frequency mutations also appeared at various locations in viral proteins, although after infecting C6/36 mosquito cells, the mutations' frequencies changed, and/or new mutations appeared. In contrast, the inter-domain region (INT, 12 amino acids)-replaced chimera quickly replicated without mutation in BHK-21 cells, although extended cell culture accumulated various mutations. These results suggest that NS3 variously interacts with DENV proteins, in which the chimeric NS3 domain replacements induced amino acid mutations, irrespective of replication efficiency. However, the viral sequences are further adjusted for replication efficiency, to fit in both mammalian cells and mosquito cells. IMPORTANCE Enzyme activities for replicating DENV 5' cap positive (+) sense RNA have been shown to reside in NS3 and NS5. However, it remains unknown how these enzymes coordinately synthesize negative (-) sense RNA, from which abundant 5' cap (+) sense RNA is produced. We previously revealed that NS5 dimerization and NS5 methyltransferase(MT)-NS3HEL interaction are important for DENV replication. Here, we found that replication incompetence due to NS3PRO or HEL replacement was compensated by a mutation at HEL or NS2B, respectively, suggesting that the interactions among NS2B, NS3PRO, and HEL are critical for DENV replication.


Assuntos
Vírus da Dengue , Animais , Aminoácidos/genética , Culicidae/metabolismo , DNA Helicases/genética , Mamíferos/genética , Mutação , Peptídeo Hidrolases/genética , RNA , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Sorogrupo , Proteínas não Estruturais Virais/metabolismo
5.
PLoS Pathog ; 19(3): e1011174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877739

RESUMO

Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 µM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Masculino , Actinas/metabolismo , Parasitos/metabolismo , Citoesqueleto de Actina/metabolismo , Culicidae/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo
6.
Cold Spring Harb Protoc ; 2023(7): .pdb.prot108042, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882290

RESUMO

Metabolic detoxification, in which insecticides are metabolized by enzymes, including cytochrome P450s, hydrolases, and glutathione-S-transferases (GSTs), to become more polar and less toxic, is one of the major mechanisms involved in the development of insecticide resistance. Piperonyl butoxide (PBO), S,S,S,-tributylphosphorotrithioate (DEF), and diethyl maleate (DEM) are inhibitors of P450s, hydrolases, and GSTs, respectively, and are frequently used as insecticide synergists in assessing the metabolic mechanisms that may be involved in the detoxification of insecticides and in the development of insecticide resistance. Synergistic assays can be used to identify the detoxification enzyme that leads to resistance to a specific insecticide. Here, we describe the procedures used in synergist studies of insecticides in both mosquito larvae and adults. The synergist is applied at a maximum sublethal concentration, which is the highest concentration that produces no apparent mortality in the experimental population, above which mortality appears. Insecticide synergistic experiments measure (1) the synergism ratio (SR), which is the difference in the levels of toxicity of a specific insecticide to a strain with and without the presence of the synergists; and (2) the synergism resistance ratio (SRR), which compares SR in the resistant strain with SR in a susceptible strain. In effect, SR indicates the levels of specific enzymes involved in the detoxification of insecticide and SRR identifies the detoxification enzymes/mechanisms that may be involved in the insecticide resistance of insects.


Assuntos
Culicidae , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas , Culicidae/metabolismo , Butóxido de Piperonila/farmacologia , Hidrolases
7.
Cold Spring Harb Protoc ; 2023(7): .pdb.top107705, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882294

RESUMO

Mosquitoes' resistance to commonly used insecticides is now widespread, hampering control efforts and leading to substantial increases in human illness and mortality rates in many areas of the world. Insecticide bioassays are quantitative methodologies used to determine the dose-response relationship of insects to insecticides and to evaluate the susceptibility or resistance of mosquitoes to specific insecticides. They are frequently used to monitor the development of insecticide resistance in mosquitoes for both field resistance diagnoses (surveillance assays), in which the ability of mosquitoes to survive exposure to a standard dose or concentration of an insecticide is measured, and laboratory bioassays, in which responses to insecticides are tested in parallel populations of resistant (field) populations and laboratory susceptible strains using serial doses or concentrations. Metabolic detoxification, in which insecticides are metabolized by enzymes, including cytochrome P450s, hydrolases, and glutathione-S-transferases (GSTs), to become more polar and less toxic, is one resistance mechanism. Piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF), and diethyl maleate (DEM) are the inhibitors of P450s, hydrolases, and GSTs, respectively, and act as synergists for rapidly testing the involvement of these enzymes in insecticide resistance. Such synergistic assays are used to identify the detoxification enzyme that leads to resistance to a specific insecticide. This introduction and its associated protocols present a detailed discussion of appropriate methodologies and procedures for laboratory larval, adult, and synergistic bioassays and introduces the field surveillance tests used to monitor insecticide resistance as recommended by the latest World Health Organization (WHO) and U.S. Centers for Disease Control (CDC) guidelines.


Assuntos
Culicidae , Inseticidas , Animais , Bioensaio , Culicidae/metabolismo , Hidrolases , Resistência a Inseticidas , Inseticidas/toxicidade , Inseticidas/metabolismo
8.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792574

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Culicidae/metabolismo , Proteínas de Protozoários , Anticorpos Monoclonais , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários
9.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108224, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669858

RESUMO

The Nα-benzoyl-dl-arginine 4-nitroanilide hydrochloride (BApNA) assay is widely used to quantify trypsin in mosquito midguts and is highly sensitive. BApNA is a chromogenic substrate for proteolytic enzymes such as trypsin and amidase. Hydrolysis of BApNA at the bond between the arginine and the p-nitroaniline moieties releases the chromophore p-nitroaniline, which is detected by colorimetric analysis. The intensity of the color is directly proportional to the amount of trypsin in the solution. Here, we present a trypsin measurement assay specifically using the BApNA substrate.


Assuntos
Culicidae , Animais , Tripsina/química , Benzoilarginina Nitroanilida , Culicidae/metabolismo , Arginina , Digestão , Cinética
10.
PLoS One ; 18(1): e0274716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595500

RESUMO

The C2H2 zinc finger gene cucoid establishes anterior-posterior (AP) polarity in the early embryo of culicine mosquitoes. This gene is unrelated to genes that establish embryo polarity in other fly species (Diptera), such as the homeobox gene bicoid, which serves this function in the traditional model organism Drosophila melanogaster. The cucoid gene is a conserved single copy gene across lower dipterans but nothing is known about its function in other species, and its evolution in higher dipterans, including Drosophila, is unresolved. We found that cucoid is a member of the ZAD-containing C2H2 zinc finger (ZAD-ZNF) gene family and is orthologous to 27 of the 91 members of this family in D. melanogaster, including M1BP, ranshi, ouib, nom, zaf1, odj, Nnk, trem, Zif, and eighteen uncharacterized genes. Available knowledge of the functions of cucoid orthologs in Drosophila melanogaster suggest that the progenitor of this lineage specific expansion may have played a role in regulating chromatin. We also describe many aspects of the gene duplication history of cucoid in the brachyceran lineage of D. melanogaster, thereby providing a framework for predicting potential redundancies among these genes in D. melanogaster.


Assuntos
Culicidae , Proteínas de Drosophila , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Culicidae/metabolismo , Dedos de Zinco/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética
11.
PLoS Negl Trop Dis ; 17(1): e0011028, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696390

RESUMO

Chikungunya virus (CHIKV) and the closely related onyong-nyong virus (ONNV) are arthritogenic arboviruses that have caused significant, often debilitating, disease in millions of people. However, despite their kinship, they are vectored by different mosquito subfamilies that diverged 180 million years ago (anopheline versus culicine subfamilies). Previous work indicated that the nonstructural protein 3 (nsP3) of these alphaviruses was partially responsible for this vector specificity. To better understand the cellular components controlling alphavirus vector specificity, a cell culture model system of the anopheline restriction of CHIKV was developed along with a protein expression strategy. Mosquito proteins that differentially interacted with CHIKV nsP3 or ONNV nsP3 were identified. Six proteins were identified that specifically bound ONNV nsP3, ten that bound CHIKV nsP3 and eight that interacted with both. In addition to identifying novel factors that may play a role in virus/vector processing, these lists included host proteins that have been previously implicated as contributing to alphavirus replication.


Assuntos
Alphavirus , Febre de Chikungunya , Vírus Chikungunya , Culicidae , Humanos , Animais , Culicidae/metabolismo , Mosquitos Vetores , Vírus Chikungunya/metabolismo , Alphavirus/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
12.
Proc Natl Acad Sci U S A ; 119(48): e2204341119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417444

RESUMO

Optical control of G protein-coupled receptor (GPCR) signaling is a highly valuable approach for comprehensive understanding of GPCR-based physiologies and controlling them precisely. However, optogenetics for GPCR signaling is still developing and requires effective and versatile tools with performance evaluation from their molecular properties. Here, we systematically investigated performance of two bistable opsins that activate Gi/Go-type G protein (mosquito Opn3 (MosOpn3) and lamprey parapinopsin (LamPP)) in optical control in vivo using Caenorhabditis elegans. Transgenic worms expressing MosOpn3, which binds 13-cis retinal to form photopigments, in nociceptor neurons showed light-induced avoidance responses in the presence of all-trans retinal, a retinal isomer ubiquitously present in every tissue, like microbial rhodopsins and unlike canonical vertebrate opsins. Remarkably, transgenic worms expressing MosOpn3 were ~7,000 times more sensitive to light than transgenic worms expressing ChR2 in this light-induced behavior, demonstrating the advantage of MosOpn3 as a light switch. LamPP is a UV-sensitive bistable opsin having complete photoregenerative ability by green light. Accordingly, transgenic worms expressing LamPP in cholinergic motor neurons stopped moving upon violet light illumination and restored coordinate movement upon green light illumination, demonstrating color-dependent control of behavior using LamPP. Furthermore, we applied molecular engineering to produce MosOpn3-based tools enabling light-dependent upregulation of cAMP or Ca2+ levels and LamPP-based tool enabling clamping cAMP levels color dependently and context independently, extending their usability. These findings define the capacity of two bistable opsins with similar retinal requirement as ChR2, providing numerous strategies for optical control of various GPCR-based physiologies as well as GPCR signaling itself.


Assuntos
Culicidae , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Lampreias/metabolismo , Culicidae/metabolismo , Visão Ocular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais Geneticamente Modificados
13.
J Virol ; 96(21): e0127822, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226983

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Culicidae , Animais , Humanos , Vírus Chikungunya/fisiologia , Culicidae/metabolismo , Mamíferos/genética , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Sítios de Ligação
14.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956879

RESUMO

A specific mosquito enzyme, 3-hydroxykynurenine transaminase (HKT), is involved in the processing of toxic metabolic intermediates of the tryptophan metabolic pathway. The HKT enzymatic product, xanthurenic acid, is required for Plasmodium spp. development in the mosquito vectors. Therefore, an inhibitor of HKT may not only be a mosquitocide but also a malaria-transmission blocker. In this work, we present a study investigating the evolution of HKT, which is a lineage-specific duplication of an alanine glyoxylate aminotransferases (AGT) in mosquitoes. Synteny analyses, together with the phylogenetic history of the AGT family, suggests that HKT and the mosquito AGTs are paralogous that were formed via a duplication event in their common ancestor. Furthermore, 41 amino acid sites with significant evidence of positive selection were identified, which could be responsible for biochemical and functional evolution and the stability of conformational stabilization. To get a deeper understanding of the evolution of ligands' capacity and the ligand-binding mechanism of HKT, the sequence and the 3D homology model of the common ancestor of HKT and AGT in mosquitoes, ancestral mosquito AGT (AncMosqAGT), were inferred and built. The homology model along with 3-hydroxykynurenine, kynurenine, and alanine were used in docking experiments to predict the binding capacity and ligand-binding mode of the new substrates related to toxic metabolites detoxification. Our study provides evidence for the dramatic biochemical evolution of the key detoxifying enzyme and provides potential sites that could hinder the detoxification function, which may be used in mosquito larvicide and design.


Assuntos
Culicidae , Alanina , Animais , Culicidae/metabolismo , Ligantes , Filogenia , Transaminases/metabolismo
15.
PLoS Pathog ; 18(8): e1010779, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998188

RESUMO

Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin's four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells.


Assuntos
Culicidae , Malária , Parasitos , Plasmodium , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Aminoácidos/metabolismo , Animais , Culicidae/metabolismo , Malária/parasitologia , Mamíferos , Parasitos/metabolismo , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Glândulas Salivares/metabolismo
16.
Nat Commun ; 13(1): 4400, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906227

RESUMO

Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite.


Assuntos
Culicidae , Malária Falciparum , Animais , Culicidae/metabolismo , Glicosilação , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trombospondinas/metabolismo , Triptofano/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35513264

RESUMO

The excessive and improper application of insecticides has caused the evolution of resistance in many mosquito populations, including Culex pipiens pallens (L.). Deltamethrin, a representative pyrethroid insecticide, is the most widely used synthetic insecticide in mosquito-borne control field. Comprehensively identifying genes and regulators associated with deltamethrin resistance and elucidating the manner in which they regulate this process is critical for effective control of mosquitoes. CircRNAs are the upstream regulatory factors of miRNAs and mRNAs, which play a role via the competitive endogenous RNA mechanism. In this study, we used high-throughput circRNA sequencing to identify circRNAs that were expressed differently in deltamethrin-susceptible strain (DS strain) and -resistant strain (DR strain) mosquitoes [NCBI Sequence Read Archive (SRA) database accession number: PRJNA714543]. We detected a total of 12,816 significantly differentially expressed circRNAs (DE-circRNAs). Among them, 6769 circRNAs were up-regulated and 6047 circRNAs were down-regulated in the DR strain compared to DS strain. Among the DE-circRNAs, we further screened that supercont3.352:252102|253283 was significantly over-expressed in the DR strain through qPCR multiple verification (P < 0.05).We used the divergent primer to amplify the rolling circle product and obtained the full-length sequence of supercont3.352:252102|253283 (GeneBank accession number: MW729338). Through software comparison and bioinformatics analysis, we predicted that supercont3.352:252102|253283 might participate in deltamethrin resistance by sponging cpp-miR-1671 and blocking its inhibition on CYP4G15.We further found that the expression of cpp-miR-1671 was significantly lower in DR strain (P < 0.01), while the expression of CYP4G15 was significantly higher in DR strain (P < 0.05).Taken together, the present study provided the most comprehensive circRNA expression profile of mosquitoes, and suggested that supercont3.352:252102|253283 might participate in deltamethrin resistance through the supercont3.352:252102|253283/cpp-miR-1671/CYP4G15 pathway.


Assuntos
Culex , Culicidae , Inseticidas , MicroRNAs , Piretrinas , Animais , Culex/genética , Culicidae/genética , Culicidae/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Nitrilas/farmacologia , Piretrinas/metabolismo , Piretrinas/farmacologia , RNA Circular/genética
18.
Sci Rep ; 12(1): 6005, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397616

RESUMO

Immune responses require delicate controls to maintain homeostasis while executing effective defense. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. The Krüppel-like factor 10 (KLF10) is a C2H2 zinc-finger containing transcription factor. The functions of mosquito AhR and KLF10 have not been characterized. Here we show that AhR and KLF10 constitute a transcriptional axis to modulate immune responses in mosquito Anopheles gambiae. The manipulation of AhR activities via agonists or antagonists repressed or enhanced the mosquito antibacterial immunity, respectively. KLF10 was recognized as one of the AhR target genes in the context. Phenotypically, silencing KLF10 reversed the immune suppression caused by the AhR agonist. The transcriptome comparison revealed that silencing AhR and KLF10 plus challenge altered the expression of 2245 genes in the same way. The results suggest that KLF10 is downstream of AhR in a transcriptional network responsible for immunomodulation. This AhR-KLF10 axis regulates a set of genes involved in metabolism and circadian rhythms in the context. The axis was required to suppress the adverse effect caused by the overactivation of the immune pathway IMD via the inhibitor gene Caspar silencing without a bacterial challenge. These results demonstrate that the AhR-KLF10 axis mediates an immunoregulatory transcriptional network as a negative loop to maintain immune homeostasis.


Assuntos
Culicidae , Fatores de Transcrição de Resposta de Crescimento Precoce , Animais , Culicidae/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Homeostase , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
19.
Insect Biochem Mol Biol ; 143: 103741, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181477

RESUMO

As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis. A critical factor in the function of tRNAs is chemical modifications which contribute to codon-anticodon interactions. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine the correlation of transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males for three mosquito species. Analysis of previous male and female RNA-seq datasets indicated a similar increase in transcript levels of tRNA-modifying enzymes in females among six mosquito species, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed higher transcript levels for tRNA-modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control through suppression of fecundity.


Assuntos
Culicidae , Animais , Anticódon , Culicidae/genética , Culicidae/metabolismo , Feminino , Masculino , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
20.
Nat Commun ; 13(1): 555, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121739

RESUMO

Mosquitoes track odors, locate hosts, and find mates visually. The color of a food resource, such as a flower or warm-blooded host, can be dominated by long wavelengths of the visible light spectrum (green to red for humans) and is likely important for object recognition and localization. However, little is known about the hues that attract mosquitoes or how odor affects mosquito visual search behaviors. We use a real-time 3D tracking system and wind tunnel that allows careful control of the olfactory and visual environment to quantify the behavior of more than 1.3 million mosquito trajectories. We find that CO2 induces a strong attraction to specific spectral bands, including those that humans perceive as cyan, orange, and red. Sensitivity to orange and red correlates with mosquitoes' strong attraction to the color spectrum of human skin, which is dominated by these wavelengths. The attraction is eliminated by filtering the orange and red bands from the skin color spectrum and by introducing mutations targeting specific long-wavelength opsins or CO2 detection. Collectively, our results show that odor is critical for mosquitoes' wavelength preferences and that the mosquito visual system is a promising target for inhibiting their attraction to human hosts.


Assuntos
Culicidae/fisiologia , Luz , Córtex Olfatório/fisiologia , Pele/metabolismo , Percepção Visual/fisiologia , Aedes/metabolismo , Aedes/fisiologia , Animais , Dióxido de Carbono/metabolismo , Culicidae/classificação , Culicidae/metabolismo , Humanos , Odorantes , Pele/química , Olfato , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA